Channel state information estimation for 5G wireless communication systems: recurrent neural networks approach

dc.contributor.authorEssai Ali, M. H.
dc.contributor.authorTaha, I. B. M.
dc.date.accessioned2021-12-21T20:14:21Z
dc.date.available2021-12-21T20:14:21Z
dc.date.issued2021
dc.description.abstractIn this study, a deep learning bidirectional long short-term memory (BiLSTM) recurrent neural network-based channel state information estimator is proposed for 5G orthogonal frequency-division multiplexing systems. The proposed estimator is a pilot-dependent estimator and follows the online learning approach in the training phase and the offline approach in the practical implementation phase. The estimator does not deal with complete a priori certainty for channels' statistics and attains superior performance in the presence of a limited number of pilots. A comparative study is conducted using three classification layers that use loss functions: mean absolute error, cross entropy function for kth mutually exclusive classes and sum of squared of the errors. The Adam, RMSProp, SGdm, and Adadelat optimisation algorithms are used to evaluate the performance of the proposed estimator using each classification layer. In terms of symbol error rate and accuracy metrics, the proposed estimator outperforms long short-term memory (LSTM) neural network-based channel state information, least squares and minimum mean square error estimators under different simulation conditions. The computational and training time complexities for deep learning BiLSTM- and LSTM-based estimators are provided. Given that the proposed estimator relies on the deep learning neural network approach, where it can analyse massive data, recognise statistical dependencies and characteristics, develop relationships between features and generalise the accrued knowledge for new datasets that it has not seen before, the approach is promising for any 5G and beyond communication system.en_ES
dc.identifier.citationEssai Ali, M. H., & Taha, I. B. M. (2021). Channel state information estimation for 5G wireless communication systems: Recurrent neural networks approach. En PeerJ Comput Sci (Vol. 7, p. e682). https://doi.org/10.7717/peerj-cs.682en_ES
dc.identifier.issn2376-5992
dc.identifier.urihttp://repositoriobibliotecas.uv.cl/handle/uvscl/3124
dc.language.isoen_USen_ES
dc.publisherPeerJ Comput Scien_ES
dc.subjectBILSTMen_ES
dc.subjectCHANNELen_ES
dc.subjectSTATE INFORMATIONen_ES
dc.subjectESTIMATOR DEEP LEARNINGen_ES
dc.subjectNEURAL NETWORKSen_ES
dc.subjectLOSS FUNCTIONSen_ES
dc.titleChannel state information estimation for 5G wireless communication systems: recurrent neural networks approachen_ES
dc.typeArticuloen_ES
dc.ubicacionhttps://doi.org/10.7717/peerj-cs.682en_ES
uv.catalogadorSGGen_ES
uv.colectionBibliografía 5Gen_ES

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Bib5G-22.pdf
Tamaño:
1.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
384 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones