Modeling the Impact of 5G Leakage on Weather Prediction

dc.contributor.authorYousefvand, Mohammad
dc.contributor.authorWu, Chung-Tse Michael
dc.contributor.authorWang, Ruo-Qian
dc.contributor.authorBrodie, Joseph
dc.contributor.authorMandayam, Narayan
dc.date.accessioned2021-12-23T13:39:28Z
dc.date.available2021-12-23T13:39:28Z
dc.date.issued2020
dc.description.abstractThe 5G band allocated in the 26 GHz spectrum referred to as 3GPP band n258, has generated a lot of anxiety and concern in the meteorological data forecasting community including the National Oceanic and Atmospheric Administration (NOAA). Unlike traditional spectrum coexistence problems, the issue here stems from the leakage of n258 band transmissions impacting the observations of passive sensors (e.g. AMSU-A) operating at 23.8 GHz on weather satellites used to detect the amount of water vapor in the atmosphere, which in turn affects weather forecasting and predictions. In this paper, we study the impact of 5G leakage on the accuracy of data assimilation based weather prediction algorithms by using a first order propagation model to characterize the effect of the leakage signal on the brightness temperature (atmospheric radiance) and the induced noise temperature at the receiving antenna of the passive sensor (radiometer) on the weather observation satellite. We then characterize the resulting inaccuracies when using the Weather Research and Forecasting Data Assimilation model (WRFDA) to predict temperature and rainfall. For example, the impact of 5G leakage of -20dBW to -15dBW on the well-known Super Tuesday Tornado Outbreak data set, affects the meteorological forecasting up to 0.9 mm in precipitation and 1.3 �C in 2m-temperature. We outline future directions for both improved modeling of 5G leakage effects as well as mitigation using cross-layer antenna techniques coupled with resource allocation.en_ES
dc.identifier.citationYousefvand, M., Wu, C.-T. M., Wang, R.-Q., Brodie, J., & Mandayam, N. (2020). Modeling the Impact of 5G Leakage on Weather Prediction. En ArXiv e-prints. https://arxiv.org/abs/2008.13498v1en_ES
dc.identifier.urihttp://repositoriobibliotecas.uv.cl/handle/uvscl/3234
dc.language.isoen_USen_ES
dc.publisherArXiv e-printsen_ES
dc.subjectSIGNAL PROCESSING (EESSen_ES
dc.subjectSP) SYSTEMS AND CONTROL (EESSen_ES
dc.subjectSY)en_ES
dc.titleModeling the Impact of 5G Leakage on Weather Predictionen_ES
dc.typeArticuloen_ES
uv.catalogadorSGGen_ES
uv.colectionBibliografía 5Gen_ES

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Bib5G-70.pdf
Tamaño:
2.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
384 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones