Target Recognition of Industrial Robots Using Machine Vision in 5G Environment

dc.contributor.authorJin, Z.
dc.contributor.authorLiu, L.
dc.contributor.authorGong, D.
dc.contributor.authorLi, L.
dc.date.accessioned2021-12-21T20:54:46Z
dc.date.available2021-12-21T20:54:46Z
dc.date.issued2021
dc.description.abstract"The purpose is to solve the problems of large positioning errors, low recognition speed, and low object recognition accuracy in industrial robot detection in a 5G environment. The convolutional neural network (CNN) model in the deep learning (DL) algorithm is adopted for image convolution, pooling, and target classification, optimizing the industrial robot visual recognition system in the improved method. With the bottled objects as the targets, the improved Fast-RCNN target detection model's algorithm is verified"," with the small-size bottled objects in a complex environment as the targets, the improved VGG-16 classification network on the Hyper-Column scheme is verified. Finally, the algorithm constructed by the simulation analysis is compared with other advanced CNN algorithms. The results show that both the Fast RCN algorithm and the improved VGG-16 classification network based on the Hyper-Column scheme can position and recognize the targets with a recognition accuracy rate of 82.34%, significantly better than other advanced neural network algorithms. Therefore, the improved VGG-16 classification network based on the Hyper-Column scheme has good accuracy and effectiveness for target recognition and positioning, providing an experimental reference for industrial robots' application and development."en_ES
dc.identifier.citationJin, Z., Liu, L., Gong, D., & Li, L. (2021). Target Recognition of Industrial Robots Using Machine Vision in 5G Environment. En Front Neurorobot (Vol. 15, p. 624466). https://doi.org/10.3389/fnbot.2021.624466en_ES
dc.identifier.issn1662-5218 (Print) 1662-5218
dc.identifier.urihttp://repositoriobibliotecas.uv.cl/handle/uvscl/3137
dc.language.isoen_USen_ES
dc.publisherFront Neuroroboten_ES
dc.subject5Gen_ES
dc.subjectENVIRONMENTen_ES
dc.subjectARTIFICIAL INTELLIGENCEen_ES
dc.subjectDEEP LEARNINGen_ES
dc.subjectINDUSTRIAL ROBOTen_ES
dc.subjectMACHINE VISIONen_ES
dc.titleTarget Recognition of Industrial Robots Using Machine Vision in 5G Environmenten_ES
dc.typeArticuloen_ES
dc.ubicacionhttps://doi.org/10.3389/fnbot.2021.624466en_ES
uv.catalogadorSGGen_ES
uv.colectionBibliografía 5Gen_ES

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Bib5G-37.pdf
Tamaño:
1.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
384 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones