Estimation and prediction of Gaussian random fields under fixed domain asymptotics using generalized Wendland covariance functions

Fecha

2017

Formato del documento

Thesis

ORCID Autor

Título de la revista

ISSN de la revista

Título del volumen

Editor

Universidad de Valparaíso

Ubicación

ISBN

ISSN

item.page.issne

item.page.doiurl

Facultad

Departamento o Escuela

Facultad de Ciencias. Instituto de Estadística

Determinador

Recolector

Especie

Nota general

Doctor en Estadistica

Resumen

En esta tesis, estudiamos la estimación y predicción de campos aleatorios Gaussianos con modelos de covarianza pertenecientes a la clase generalizada de Wendland (GW), bajo asintóticos de dominio fijo. Como el caso Matérn, esta clase permite una parametrización continua de la suavidad del campo aleatorio Gaussiano a soporte compacto. Específicamente, caracterizamos primero la equivalencia de dos medidas Gaussianas con función de covarianza GW, y proporcionamos condiciones suficientes para la equivalencia de dos medidas Gaussianas de funciones de covarianza Matérn y GW. Elucidar las consecuencias de estos hechos en términos de (mal especificados) mejores predictores lineales no sesgados. En la segunda parte, establecemos una consistencia y distribución asintótica del estimador de máxima verosimilitud del parámetro microergódico asociado al modelo de covarianza GW, bajo dominio fijo asintótico. Nuestros hallazgos se ilustran a través de un estudio de simulación: el primero compara el comportamiento de la muestra finita de la estimación de máxima verosimilitud del parámetro microergódico con la distribución asintótica dada. El último compara el comportamiento de la muestra finita de la predicción y su error cuadrático medio asociado cuando se usan dos medidas Gaussianas equivalentes con el modelo de covarianza Matérn y GW, utilizando la covarianza tapering como punto de referencia.

Descripción

Lugar de Publicación

Auspiciador

Palabras clave

ANALISIS DE VARIANZA, DISTRIBUCION DE GAUSS, ESTADISTICA

Licencia

URL Licencia

Colecciones