Métodos de estimación adaptativos en modelos de regresión

Fecha

2023

Formato del documento

TDOC

ORCID Autor

Título de la revista

ISSN de la revista

Título del volumen

Editor

Universidad de Valparaíso

Ubicación

ISBN

ISSN

item.page.issne

item.page.doiurl

Facultad

Facultad de Ciencias

Departamento o Escuela

Facultad de Ciencias. Instituto de Estadística

Determinador

Recolector

Especie

Nota general

Doctor en Estadística. Universidad de Valparaíso. 2023.

Resumen

En el presente trabajo se plantea el problema de estimación no paramétrica (por núcleo) de la función de regresión en un modelo de regresión univariante. La precisión de la estimación se mide utilizando riesgos puntuales. Específicamente se plantea la estimación adaptativa de la función de regresión en contexto de dependencia, considerando que la variable explicativa es un proceso débilmente dependiente cuyo coeficiente de correlación tiene decaimiento exponencial. Se asume que la variable explicativa es idénticamente distribuida con función de densidad acotada, esta función de densidad en un caso se considera conocida (caso 1) y en otro caso desconocida (caso 2). Para estimar la función de regresión, se propone estimación por Núcleo y de selección de ventana por enfoque de Goldenshluger-Lepski (G-L). En ambos casos se demuestran nuevos resultados obteniendo que los estimadores seleccionados satisfacen desigualdades de oráculo y que son adaptativos respecto a la regularidad de la función de regresión. Además, se hace una calibración de los métodos de selección de estimadores en base a desigualdades tipo Bernstein adaptados a datos débilmente dependientes. Finalmente, se implementan los distintos métodos propuestos en el software R y se desarrollan simulaciones para ilustrar el desempeño de los métodos propuestos en riesgo puntual y riesgo integrado.

Descripción

Lugar de Publicación

Valparaíso

Auspiciador

- CONICYT –PFHA / Doctorado Nacional 2019 – 21191358, - Proyecto FONDECYT regular 1221373

Palabras clave

Licencia

Colecciones