Métodos de estimación adaptativos en modelos de regresión
Fecha
2023
Autores
Profesor Guía
Formato del documento
TDOC
ORCID Autor
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad de Valparaíso
Ubicación
ISBN
ISSN
item.page.issne
item.page.doiurl
Facultad
Facultad de Ciencias
Departamento o Escuela
Facultad de Ciencias. Instituto de Estadística
Determinador
Recolector
Especie
Nota general
Doctor en Estadística. Universidad de Valparaíso. 2023.
Resumen
En el presente trabajo se plantea el problema de estimación no paramétrica (por núcleo) de la función de regresión en un modelo de regresión univariante. La precisión de la estimación se mide utilizando riesgos puntuales. Específicamente se plantea la estimación adaptativa de la función de regresión en contexto de dependencia, considerando que la variable explicativa es un proceso débilmente dependiente cuyo coeficiente de correlación tiene decaimiento exponencial. Se asume que la variable explicativa es idénticamente distribuida con función de densidad acotada, esta función de densidad en un caso se considera conocida (caso 1) y en otro caso desconocida (caso 2). Para estimar la función de regresión, se propone estimación por Núcleo y de selección de ventana por enfoque de Goldenshluger-Lepski (G-L). En ambos casos se demuestran nuevos resultados obteniendo que los estimadores seleccionados satisfacen desigualdades de oráculo y que son adaptativos respecto a la regularidad de la función de regresión. Además, se hace una calibración de los métodos de selección de estimadores en base a desigualdades tipo Bernstein adaptados a datos débilmente dependientes. Finalmente, se implementan los distintos métodos propuestos en el software R y se desarrollan simulaciones para ilustrar el desempeño de los métodos propuestos en riesgo puntual y riesgo integrado.
Descripción
Lugar de Publicación
Valparaíso
Auspiciador
- CONICYT –PFHA / Doctorado Nacional 2019 – 21191358,
- Proyecto FONDECYT regular 1221373